منابع مشابه
Bregman Voronoi Diagrams
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define various variants of Voronoi diagrams depending on the class of objects, the distance function and the embedding space. In this paper, we investigate a framewo...
متن کاملSkew Jensen-Bregman Voronoi Diagrams
A Jensen-Bregman divergence is a distortion measure defined by a Jensen convexity gap induced by a strictly convex functional generator. Jensen-Bregman divergences unify the squared Euclidean and Mahalanobis distances with the celebrated information-theoretic JensenShannon divergence, and can further be skewed to include Bregman divergences in limit cases. We study the geometric properties and ...
متن کاملBregman Voronoi Diagrams: Properties, Algorithms and Applications
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework...
متن کاملLimits of Voronoi Diagrams
Dit proefschrift werd mede mogelijk gemaakt met financiële steun van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek.
متن کاملFarthest-Polygon Voronoi Diagrams
Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log n) time algorithm to compute it. We also prove a number of structural properties of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2010
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-010-9256-1